
RAPID MICROBIOLOGICAL MONITORING METHODS:
THE STATUS QUO

1. INTRODUCTION

The transmission of water-borne diseases is still a
matter of major concern, despite worldwide efforts
and modern technologies utilised for the production
of safe drinking water.  This problem is not confined
to the developing world where treatment may be
non-existent or inadequate. There may also be con-
tamination during storage, a lack of regulations and
limited understanding and awareness among the
population (AAM, 1996).  It may also assume serious
proportions in industrial countries (Kramer et al.,
1996).  Mechanical failure, human error or deteriora-
tion in the quality of the source water can lead to the
failure of even the best treatment systems and disin-
fection processes (MacKenzie et al., 1994; Roefer et
al., 1996).  Rapid and reliable routine monitoring of
the microbiological quality of source and treated
drinking water will therefore remain of fundamental
importance in the control of water-borne diseases
(Sobsey et al., 1993).

The purpose of this report is to create a broader
understanding among IWA members and other
interested parties of developments in the field of
rapid methods for microbiological monitoring of
water. Microbiological monitoring of source and
drinking water is also associated with several other
issues of concern that have never been fully
resolved.

These include the type and range of microorgan-
isms to be tested for, the required frequency of sam-
pling and the ease of analysis (Pipes, 1990).
Although all these issues are of great importance,
this report will focus on the need for rapid microbio-
logical analyses and the current state of the art.

The document consists of two parts.  First, the
report itself gives an overview of the requirements for
and developments in rapid microbiological methods.
Only the broad issues of concern are addressed
since the report is not meant to be an in-depth study.

Secondly, attached to the report is a separate bibli-
ography of literature related to the rapid detection of
microbes in source and drinking water.  The purpose
of this bibliography is 

• to create awareness of the work already done in
this field,

• to serve as a basis for readers interested in gain-
ing a deeper understanding of it, and

• to stimulate future research into rapid methods.

2. CURRENT MONITORING PROBLEMS

To protect consumers against possible water-borne
diseases, ideally the occurrence and levels of all
pathogens in drinking water should be monitored.
This ideal is, however, not attainable.  Many
pathogens are only present under specific condi-
tions and, when present, occur at low levels com-
pared with other microorganisms.  Most of the meth-
ods used for pathogen detection do not give any
indication of the level of contamination but only
whether or not the specific pathogen is present
(Gray, 1994). Many of the detection methods being
used at present are also expensive and time-con-
suming, require sophisticated equipment and exper-
tise, and are not necessarily suitable for routine
analysis (WHO, 1996)

To overcome the above-mentioned problems,
more readily-detected indicator (index) organisms
have been widely used to assess the microbiological
quality of drinking and source water (Pipes, 1982).
At present, the indicator organisms most widely
used are bacteria (coliform bacteria, faecal coliform
bacteria, enterococci, etc.).  Virus indicators (somat-
ic coliphages, FRNA bacteriophages etc.) are also
used (IAWPRC, 1991) and yeasts (Candida) have
been included in some programmes.  For many
pathogens such as viruses and protozoan parasites,
reliable indicators are not available and lengthy pro-
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cedures have to be used for the direct detection of
these pathogens (Hibler, 1988; Hurst, 1991;
Marshall et al., 1997).

The indicator organisms used to assess the
degree of faecal pollution may also be used as
model organisms to evaluate the effectiveness of
treatment processes, or to provide information on
the availability of nutrients in the water to support
bacterial growth (WHO, 1996).

3. THE NEED FOR RAPID METHODS

Whether testing directly for pathogens or indirectly
by testing for indicator organisms, there is a com-
mon need for rapid analyses. Typically, the treatment
of drinking water is a continuous process and, owing
to constant demand, water is used within hours after
treatment.  Real-time analysis would be ideal for the
management of microbial water quality and the pro-
tection of public health.

At present, using conventional methods for the
assessment of the bacteriological quality of drinking
water, results are only available after 18 to 24 hours.
If those results have to be confirmed, another 1 to 2
days may be required.  The detection of bacterial
pathogens in water can take even longer.  Testing
water for the presence of specific viruses might even
take as long as a few weeks since the standard
methodology involves working with cell cultures
(APAH et al., 1995).  Consequently, information on
the microbiological quality of the water supplied to
consumers is often available long after the water has
been utilized.

The increasing population in many parts of the
world has also led to deterioration in the quality of
the ground and surface water sources used for the
production of drinking water.  Surface water is often
subject to frequent and dramatic changes in its
microbial quality.  This is due mainly to intermittent
point and diffuse pollution sources within the catch-
ment.  Fluctuations may also be seasonal.  High
microbiological pollution levels have been noted after
rainstorms, associated with surface run-off (Venter et

al., 1997).  Water treatment facilities should have the
capability of detecting such fluctuations rapidly in
order to adjust the treatment process.  If the treat-
ment is not adjusted in time, there may be insuffi-
cient treatment or “breakthrough”, resulting in cont-
amination of the whole water distribution network
(Van der Wende and Charaklis, 1990). Failure of
treatment plants, contamination of distribution net-
works or disruption of water supply services can also
be caused by natural disasters or sabotage.  In all
these cases there is an urgent need for rapid and
reliable information on the microbiological quality of
drinking water.

Regular fluctuations in water quality and the need
for cost-effective operation mean that water treat-
ment works have to optimize treatment processes
constantly.  In many countries, water suppliers are
also required to supply water of a specified microbi-
ological quality and adjustments to the treatment
have to be made accordingly.  Evaluation of the
treatment, especially disinfection, is based mainly on
microbial parameters.  Rapid analyses of these para-
meters are needed to determine the effect of
changes made to the treatment and to make adjust-
ments whenever necessary.

The lack of rapid methods for the monitoring of
source and treated water has not, however, meant
an absence of management or control over the
microbial quality of drinking water.  Water suppliers
have often used other measures to protect public
health.  Typically, they rely on the monitoring of other
parameters such as the residual levels of disinfectant
as well as turbidity and particle count analysis (APAH
et al., 1995).

4. MINIMUM REQUIREMENTS FOR
RAPID METHODS

An essential requirement for rapid methods should
be the availability of data in the shortest time possi-
ble.  These methods should be faster than the stan-
dard methods currently used. The results of some of
the conventional methods can be available within 18
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to 24 hours, e.g. the membrane filtration technique
for faecal coliforms. For bacterial indicators, the ideal
for rapid methods should therefore be to have
results within the same working day.  Methods pro-
viding confirmed results after 24 hours could also be
classified as rapid methods when compared with
standard methods in which further confirmation of
results is required, which may take another 24 to 48
hours.  The detection of viruses in water using con-
ventional methods is a lengthy procedure that could
take days before results are available.  In this case,
results within 48 hours may still be considered as
rapid (APAH et al., 1995).

Apart from being significantly faster, rapid meth-
ods should ideally have sensitivity and specificity
equal to those of the standard methods used regu-
larly.  Sensitivity remains a major drawback for many
of the rapid methods proposed as the number of
organisms sought may be below the minimum con-
centration of microbes essential for direct detection.
Some of these methods will only be of use for mon-
itoring wastewater or source water, and will not be
sensitive enough to determine the microbial quality
of drinking water where much smaller numbers of
microorganisms need to be detected (WHO, 1996).

The viability of the organisms detected by rapid
methods is as important as with the standard
methods.  The techniques should have the ability to
distinguish between viable and dead microorgan-
isms. Results from rapid methods used for the rou-
tine monitoring of water quality should be repeatable
and reproducible. This implies not only that the same
analyst should be able to get similar results when
analysing identical samples, but also that results
should be reproducible between analysts in the
same laboratory and between various laboratories.
Any new method should therefore be subjected to
performance testing before it can be used on a
routine basis. Ideally the method should perform
satisfactorily in a wide range of water supplies of
different quality. 

It is also essential that laboratories carrying out
microbiological examination of water supplies should
operate a system of quality assurance which include
internal and external analytical control. Internal qual-
ity control will focus on factors such as the sterility of
equipment, media and reagents as well as the test-
ing of regular positive samples containing known
amounts of  the organism to be detected by the spe-
cific method. External analytical quality control
schemes involve the laboratory examining samples
prepared by a central organisation. Any evidence of
an unacceptable performance in internal or external

schemes should immediately trigger an investigation
and remedial action. In order for the development of
rapid detection methods to be used on a routine
basis, other logistical and economic factors should
also be considered.  Attention should be given to:

• the cost and availability of reagents, 
• the need for special handling of samples,
• the need for dedicated and expensive apparatus, 
• the ease of performance and interpretation of

results, and 
• the training needs of the analyst.

5. CURRENT RAPID METHODS

5.1 Background

Methods for the detection of microorganisms in
water can be roughly divided into three categories.
Most of the standard methodologies used at present
fall within the first group of cultivation techniques.
The second group consists of those techniques in
which the microorganisms are detected directly in
the sample without first culturing the organism.
Various techniques are used, including several mole-
cular techniques such as the polymerase chain reac-
tion (PCR).  The third group contains the methods
based on combinations of the previous two types of
techniques.

5.2 Cultivation techniques

Cultivation techniques utilize selective media or as in
the case of viruses specific cell lines for growth of the
organisms. The targeted organisms are allowed to
multiply to a level where the cells can be easily
detected by visible growth (turbidity or specific types
of colonies).  The presence of metabolic products or
enzymes could also be used for the detection of
specific bacterial groups.

5.2.1 Culture-based techniques for the
detection of bacteria

The standard techniques used for the enumeration
of bacterial indicators in water, e.g. total coliforms,
faecal coliforms or E. coli, are culture-based tech-
niques that utilize either the most probable number
(MPN) or the membrane filtration technique.
Depending on the composition of the media utilized,
confirmation of positive results may be an additional
requirement (APAH et al., 1995).



The duration of culture-based methods can be
improved in two ways.  The first would be to use
selective media or the detection of specific enzymes
or metabolic products that would eliminate the need
for additional confirmation tests.  There are numer-
ous examples of such improvements, including vari-
ations on the presence-absence tests discussed
below.  The improvement of existing culture media
will not be dealt with in this report (Alonso et al.,
1996; Brenner et al., 1996).  The second way of
improving duration would be to shorten the time
needed to detect the bacteria, their enzymes or
metabolic products.

The original aim in developing the presence-
absence test procedure was to provide a simpler
and less expensive way of testing water samples
where only a limited number of positive samples are
expected (Clark, 1990).  Over the last ten years, sev-
eral companies have developed presence-absence
tests for the detection of total coliforms, E. coli and
enterococci (Edberg et al., 1988; Manafi and Kneifel,
1989; Budnick et al., 1996).  Recently, variations on
these tests based on the MPN technique have also
become available (Hernandez et al., 1993).  The
tests rely on the detection of specific enzyme activi-
ties associated with the targeted indicator organism
and no further confirmation tests are needed.  The
results are available within 18 to 24 hours and are
therefore faster than those standard methods where
confirmation of the results is required, which take 48
to 72 hours.  For this reason, the presence-absence
tests are often referred to as rapid methods although
they may not necessarily be faster than some of the
membrane filtration methods using selective media
(APAH et al., 1995).  For the detection of faecal col-
iforms, a test providing results after 7 hours has
been described (Reasoner et al., 1979)

The specificity of these rapid culture-based meth-
ods is usually based on the detection of enzyme
activities associated with the specific group of
organisms to be detected, e.g. �-galactosidase indi-
cating total coliform bacteria and �-glucuronidase
indicating E. coli (Manafi et al., 1991; Frampton and
Restaino, 1993).  Aeromonas hydrophila could
induce a false positive result for �-galactosidase
based tests after prolonged incubation. Specificity
has, however, been evaluated on numerous occa-
sions and found to be acceptable when compared
to the methods currently used.

The main disadvantage of culture-based tech-
niques is that the growth rate of bacteria under
optimal conditions cannot be increased.  A certain
period always has to be allowed for the growth of

the bacteria.  Some efforts at improvement have
therefore been aimed at increasing the sensitivity of
detecting bacterial growth or enzyme activity.  The
length of incubation for a fluorogenic presence-
absence test for the detection of total and faecal col-
iforms in surface water could be shortened to 12 h
using a spectrofluorometer (Park et al., 1995).  It may
be possible to detect E. coli in potable water within
15 h using indirect impedance (Timms et al., 1996).
Fiksdal et al. (1994) reported that galactopyranosi-
dase and glucuronidase activities could be detected
within 25 minutes with a spectrofluorometer.  For the
glucuronidase, a sensitivity of 10 to 100 CFU/100 ml
was reported, but the sensitivity of the galactopyra-
nosidase assay was poorer.

Using liquid scintillation spectroscopy for the
detection of radioactively labelled 14CO2 formed dur-
ing the growth, faecal coliforms could be detected
within 4,5 hours.  The sensitivity reported for this
technique was as low as 10 cells.  Working with
radioactive material and the need for a scintillation
counter are definite drawbacks of this method
(Reasoner and Geldreich, 1989).

A major advantage of the culture-based methods
is that there is no doubt about the viability of the
organisms detected since they had to grow and mul-
tiply in order to be detected.  Concern has, howev-
er, been expressed about the presence of viable but
non-culturable bacteria in samples. Although viable
and present in the sample, these organisms will not
grow on the media used in the tests and this could
lead to false negative results.

In most cases, laboratories responsible for routine
microbiological  analyses  of  water  samples  can
easily include the above mentioned culture-based
methods, as only limited training of personnel is
required.  These techniques could easily be incorpo-
rated into the existing quality control systems of
accredited laboratories performing routine microbio-
logical analyses.

5.2.2 Cultivation methods for the detection of
viruses

Cultivation techniques are seldom used for the rapid
detection of viruses and protozoan parasites in
water as they often need cell-culture systems or live
hosts for replication.  Work has, however, been done
on the rapid detection of coliphages, a viral indicator,
in water.  With this method, the number of col-
iphages in 100 ml of water can be estimated
within 6 hours, with an estimated sensitivity of
�6/100 ml(Wentsel et al., 1982).



5.3 Direct detection methods

The basis of these techniques is the direct detection
of microorganisms in the water samples, without any
prior enrichment.  The techniques usually consist of
the labelling of the organisms or their components,
followed by the detection of the labels.  Several tech-
niques can be used to detect the labelled organisms
or components, such as spectroscopy, elec-
trophoresis, fluorescence microscopy, flow cytome-
try and laser scanning.

5.3.1 Non-specific techniques

There are several methods that do not distinguish
between species or groups of microorganisms.
Methods using fluorochromes, such as acridine
orange and 4’,6-diamidino-2-phenylindole (DAPI),
are non-specific which means that non-viable organ-
isms could also be detected; this restricts their use
in the monitoring of microbial water quality (Kepner
and Pratt, 1994).  There are other techniques that
could be used for the detection of active microor-
ganisms in water but they are also non-specific.
They provide an indication of the level of active
microorganisms (used mainly for bacteria) in the
sample and are, therefore, of only limited use in con-
trolling the microbiological quality of water.
Bioluminescence, impedance, epifluorescence
microscopy and flow cytometry using fluorochromes
aimed at detecting viability are among these tech-
niques (Schaule et al., 1993; Diaper and Edwards,
1994; McFeters et al., 1995).

5.3.2 Specific techniques

In recent years, with the rapid development of mole-
cular methods, several techniques with high speci-
ficity have been developed for the direct detection of
microorganisms in water.

5.3.2.1 Immunological techniques

Immunological techniques for the detection of
microorganisms, especially pathogenic organisms,
have been widely used in the water field (Hibler,
1988; Obst et al., 1989; Kfir et al., 1993). Antibodies
are raised against unique antigens characteristic of
the microorganism to be detected.  The antibodies
are usually linked with an enzyme or fluorescent dye.
The fluorescently labelled bacteria or parasites are
mostly detected with epifluorescence microscopy.
Results can be available within the same day but
since each sample has to be evaluated individually

under the microscope, it can take much longer to
process a large number of samples.

The processing of fluorescently labelled samples
can be accelerated by using techniques such as flow
cytometry to detect the labelled organisms (Tyndall
et al., 1985; Davey and Kell, 1996).  The labelled
organisms are sorted by light scattering and fluo-
rescence emitted by the fluorochromes.  Histograms
showing the number of cells that possess a certain
property (size, fluorescence) are given as the output.
The sorted cells can be confirmed through
microscopy.

The viability of the organisms detected is a matter
of great concern and some antibodies used may
exhibit cross-reactions which will compromise the
specificity of the test (Kfir and Genthe, 1993).  The
sensitivity of most of the techniques that utilize
microscopes for the detection of the organisms is
estimated to be in the order of 104 cells per slide
(Manz et al., 1995).  Only small volumes can be
examined using microscopy, immunoassays, con-
ductance or flow cytometry, and samples definitely
need to be concentrated to detect low levels of
microorganisms (Yu and Bruno, 1996).

5.3.2.2 Bacteriophages

Genetically engineered phages containing the lux
gene have been used for the detection of bacteria in
environmental samples.  After infection, the targeted
organism will emit light that can be detected.
Phages containing the Ina gene have also been used
and there have been reports of other methods that
do not require genetically engineered phages.
Techniques using this approach have been reported
to be sensitive and only viable bacteria would be
detected (Turpin et al., 1993; Sidorowicz and
Whitmore, 1995).

5.3.2.3 Hybridization

Hybridization using various types of probes has been
used for the detection of specific pathogenic bacte-
ria, viruses and parasites in water (Abbaszadegan et
al., 1991; Dubrou et al., 1991; Knight et al., 1991).
Because of its low sensitivity, it has been used main-
ly for the identification of microorganisms in polluted
water and has to a great extent been replaced by
PCR-based techniques.  It is still used as a method
for confirming PCR results (Bej et al., 1991a).

In situ hybridization has been used for the direct
detection of bacteria in water samples.  Only active
bacteria should be detected because the oligonu-
cleotide probe is directed at the rRNA of the



bacterium.  After hybridization, the organisms can be
detected with a microscope or flow cytometer (Manz
et al., 1993; Manz et al, 1995). Oligonucleotide
probes for the detection of Cryptosporidium parvum
have also been described recently (Lindquist, 1997).

5.3.2.4 Laser scanning

Direct methods for the detection of microorganisms
usually involve the labelling of organisms or their
components, followed by the detection of the labels.
Many of the above described procedures rely on the
use of a fluorescent label (e.g. fluorescein) which
permits detection of the microorganisms using epi-
fluorescence microscopy. However, this technique is
labour intensive, time consuming, inaccurate and
causes operator fatigue.

The ChemScan RDI instrument (Chemunex,
France) has been designed to replace manual micro-
scopic examination of such samples allowing rapid
detection and enumeration of fluorescently labelled
microorganisms. Organisms are captured by mem-
brane filtration. Labelled and the filter subsequently
scanned with a laser. During this analysis, fluores-
cent events, including labelled organisms are detect-
ed by a series of detection units. Finally the signals
generated undergo a sequence of computer analy-
ses which distinguish between labelled organisms
and fluorescent debris. A visual validation of all
results can be made by transferring the membrane
to an epifluorescence microscope which is fitted to a
motorised stage. This stage, which is controlled by
the ChemScan RDI, can be driven to the location of
each fluorescent event for a rapid confirmation of all
results.

Recent studies have demonstrated that
Cryptosporidium oocysts and Giardia cysts may be
detected using laser scanning after labelling with flu-
orescently labelled monoclonal antibody.   In addition
further reports suggested that Escherichia coli
labelled with a specific 16S rRNA probe can also be
successfully detected (D Reynolds, personal com-
munication). This detection procedure may be
extended for the detection of other organisms, in a
variety of applications.

5.3.2.5 Polymerase chain reaction-based
techniques

By using the polymerase chain reaction (PCR), a
selected gene sequence specific to a group of
organisms or a single species can be selectively
amplified.  The amplified sequence can easily be
detected by means of techniques such as elec-

trophoresis, hybridization, high performance liquid
chromatography or ELISA.  This technique has
recently received most of the attention in the devel-
opment of rapid detection methods.  This is due
mainly to the excellent specificity, improved sensitiv-
ity, applicability to any group of microorganisms and
ease of detection of results.  It is used mostly for the
detection of pathogens in water but can also be
used for indicator bacteria (Alvarez et al., 1993).

In the water field, PCR-based methods have been
applied extensively for the detection of viruses
because they can replace lengthy standard proce-
dures involving the infection of cell cultures
(Abbaszadegan et al., 1993; Graff et al., 1993,
Schwab et al., 1995).  PCR has been used for the
direct detection of bacteria in water (Bej et al.,
1991a; Toranzos and Alvarez, 1992) and a number
researchers have also used PCR for the detection of
protozoan parasites in water (Mahbubani et al.,
1991; Mayer and Palmer, 1996, Rochelle et al.,
1997a).

The main concern with the use of PCR-based
techniques for the direct detection of all types of
microorganisms in water is of viability or infectivity.
PCR will detect any intact targeted nucleic acid
sequence.  Studies performed on DNA from patho-
genic bacteria showed that non-viable cells could be
detected in an environmental water sample for up to
three weeks (Josephson et al., 1993).  Studies on
the survival of viral RNA found that PCR will detect
mainly well-protected viral particles and that naked
viral RNA does not survive for long periods in water
(Tsai et al., 1995).  Detection is, however, no assur-
ance of infectivity as it can only be determined using
cell cultures or animal models.  Some researchers
have claimed that the selection of a large DNA target
region may result in the detection of only viable
organisms (Bej et al., 1991a). The use of reverse
transcriptase PCR has also been used for the detec-
tion of viable organisms (Rochelle et al., 1997b;
Kaucner and Stinear, 1998).

In spite of the improved sensitivity of PCR, its
application is limited by small reaction volumes and
it can only be used for the direct detection of
microorganisms in polluted source water.  The tech-
nique also needs to be combined with concentration
steps.  Another problem with PCR-based tech-
niques is that they only supply presence-absence
data.  Nevertheless, at present different methods for
the quantification of PRC products have been devel-
oped. PCR be performed on the basis of the MPN
technique, but the number of reactions needed and
the costs will increase substantially.



5.4 Combined techniques

In order to utilize the major advantages of both
groups of techniques mentioned above,  combina-
tions have been developed.  For the detection of
bacteria, the sensitivity of methods can be improved
by incorporating an enrichment step (cultured-based
technique).  This will also solve the problem of viabil-
ity as bacteria growing in the enrichment broth will
be detected.  Enrichment has been combined with
PCR on several occasions (Koenraad et al., 1995).

A combined cell-culture-PCR technique was used
for the detection of infectious enteroviruses in envi-
ronmental samples and results were available within
24 hours (Reynolds et al., 1996; Murrin and Slade,
1997).  Recently, fluorescently labelled antibodies or
PCR have been combined with a cell-culture method
to detect infective Cryptosporidium parvum oocysts
in environmental samples (Slifko et al., 1997,
Rochelle et al., 1997b).

A combined immunoassay method using mono-
clonal antibodies against the enterobacterial com-
mon antigen has also been used for the detection of
the Enterobacteriaceae. An enzyme-linked immuno-
sorbent assay (ELISA) was combined with an enrich-
ment step to improve the sensitivity of the method.
The test could be performed in 24 hours (Hübner et
al., 1992). Enterococci could be detected within 8 to
20 hours when a culture-based method was com-
bined with rRNA targeted DNA probes. After
hybridization of the microcolonies on the filter, the
colonies were detected using epifluorescence
microscopy (Meier et al., 1997).

5.5 Concentration of samples

For the monitoring of drinking water, the sensitivity
required for indicator organisms is often of the order
of one organism in 100 ml of water, but for viruses
there is a need to sample volumes as large as 100 l
(Payment, 1991).  To obtain the required sensitivity,
many of these methods will incorporate an initial
concentration or selective separation procedure or
combinations of these.  Apart from the normal mem-
brane filtration (Bej et al., 1991b), other techniques
have been incorporated, e.g. cross-flow filtration,
chromatography and immunomagnetic separation
(Sidorowicz and Whitmore, 1995; Paul et al., 1991).
The use of some of these techniques is still limited by
their cost and applicability in dealing with large vol-
umes.

Immunomagnetic separation has been used for
the concentration of Giardia lamblia cysts from large
water samples. The antibody-magnetite was applied

to concentrate samples obtained after filtration of the
original sample.  An average recovery rate of 82%
was reported (Bifulco and Schaefer, 1993).  In addi-
tion, the technique has been applied to the capture
of Cryptosporidium oocysts (Campbell and Smith;
1997).  Viruses can also be concentrated in environ-
mental samples using this procedure (Graff et al.,
1993; Deng et al., 1994).

6. FUTURE DEVELOPMENTS

At present the ideal of real-time analysis cannot be
achieved, but developments during the last ten years
have made it possible to detect many indicator
organisms and pathogens in water within the same
day.  Since all techniques have their advantages and
disadvantages, the greatest potential lies in combi-
nations of techniques.

Sensitivity is still a major concern, especially when
monitoring drinking water.  To improve sensitivity,
attention should be given not only to culture and
direct detection techniques, but also to concentra-
tion and separation methods.
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